

Welcome to stickydesign’s documentation!

Contents:

	Changelog
	0.8.0

	0.7.0

	0.4.3

Indices and tables

	Index

	Module Index

	Search Page

Changelog

0.8.0

Major changes:

	Added stickydesign2 (used internally by alhambra)

0.7.0

Major changes:

	
	Rearranged energetics. There are now three energetics classes:

	
	EnergeticsOld: this is the old energetics class (energetics_santalucia)

	EnergeticsBasic: this is an energetics class, based on energetics_daoe, which assumes that we know nothing about anything adjacent to the sequences. This likely makes the most sense for toeholds, or as a base for creating your own classes. It uses the new ‘S’ ‘end’ type, which is really just a sequence.

	EnergeticsDAOE: this is an improved version of energetics_daoe. It makes the most sense for sticky ends for DAO-E tiles.

	Added the multimodel module, which contains an endchooser that tries to optimize for multiple energetics classes at once.

	Added documentation!

Fixes:

	Fixed various installation issues in both Python 2 and Python 3.

	Removed auto-import of multimodel, which requires Python 3.

	Fixed examples in the README.

0.4.3

	Include ∆S parameters and thus temperature dependence for internal single-base
mismatches, from Allawi 97 + 98 (4 papers in total) and Peyret 99.

 Python Module Index

 s

 		 	

 		
 s	

 	[image: -]
 	
 stickydesign	

 	
 	
 stickydesign.endclasses	

 	
 	
 stickydesign.energetics_basic	

 	
 	
 stickydesign.energetics_basic_old	

 	
 	
 stickydesign.energetics_daoe	

 	
 	
 stickydesign.multimodel	

 	
 	
 stickydesign.newparams	

 	
 	
 stickydesign.plots	

 	
 	
 stickydesign.stickydesign	

 	
 	
 stickydesign.test_general	

 	
 	
 stickydesign.version	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | M
 | P
 | R
 | S
 | T
 | U
 | V

A

 	
 	adjs (stickydesign.endclasses.endarray attribute)

 	
 	append() (stickydesign.endclasses.endarray method)

B

 	
 	box_multi() (in module stickydesign.plots)

C

 	
 	cadjs (stickydesign.endclasses.endarray attribute)

 	
 	comps (stickydesign.endclasses.endarray attribute)

 	concat() (stickydesign.endclasses.endarray method)

D

 	
 	deviation_score() (in module stickydesign.multimodel)

E

 	
 	easy_space() (in module stickydesign.stickydesign)

 	easyends() (in module stickydesign.stickydesign)

 	endarray (class in stickydesign.endclasses)

 	endchooser() (in module stickydesign.multimodel)

 	endchooser_random() (in module stickydesign.stickydesign)

 	endchooser_standard() (in module stickydesign.stickydesign)

 	endfilter_standard() (in module stickydesign.stickydesign)

 	endfilter_standard_advanced() (in module stickydesign.stickydesign)

 	
 	endlen (stickydesign.endclasses.endarray attribute)

 	ends (stickydesign.endclasses.endarray attribute)

 	Energetics (class in stickydesign.endclasses)

 	EnergeticsBasic (class in stickydesign.energetics_basic)

 	EnergeticsBasicOld (class in stickydesign.energetics_basic_old)

 	EnergeticsDAOE (class in stickydesign.energetics_daoe)

 	energy_array_uniform() (in module stickydesign.stickydesign)

 	enhist() (in module stickydesign.stickydesign)

F

 	
 	fcomps (stickydesign.endclasses.endarray attribute)

 	
 	find_end_set_uniform() (in module stickydesign.stickydesign)

G

 	
 	get_accept_set() (in module stickydesign.stickydesign)

H

 	
 	heatmap() (in module stickydesign.plots)

 	
 	hist_multi() (in module stickydesign.plots)

I

 	
 	info (stickydesign.energetics_basic.EnergeticsBasic attribute)

 	(stickydesign.energetics_daoe.EnergeticsDAOE attribute)

M

 	
 	matching_uniform() (stickydesign.energetics_basic.EnergeticsBasic method)

 	(stickydesign.energetics_basic_old.EnergeticsBasicOld method)

 	(stickydesign.energetics_daoe.EnergeticsDAOE method)

P

 	
 	pairseqa (class in stickydesign.endclasses)

R

 	
 	revcomp() (stickydesign.endclasses.pairseqa method)

S

 	
 	seqlen (stickydesign.endclasses.endarray attribute)

 	setup() (stickydesign.test_general.test_energetics method)

 	(stickydesign.test_general.test_energetics_basic method)

 	(stickydesign.test_general.test_energetics_daoe method)

 	spacefilter_standard() (in module stickydesign.stickydesign)

 	stickydesign (module)

 	stickydesign.endclasses (module)

 	stickydesign.energetics_basic (module)

 	
 	stickydesign.energetics_basic_old (module)

 	stickydesign.energetics_daoe (module)

 	stickydesign.multimodel (module)

 	stickydesign.newparams (module)

 	stickydesign.plots (module)

 	stickydesign.stickydesign (module)

 	stickydesign.test_general (module)

 	stickydesign.version (module)

 	strings (stickydesign.endclasses.endarray attribute)

T

 	
 	temperature (stickydesign.energetics_basic.EnergeticsBasic attribute)

 	(stickydesign.energetics_daoe.EnergeticsDAOE attribute)

 	test_energetics (class in stickydesign.test_general)

 	test_energetics_basic (class in stickydesign.test_general)

 	test_energetics_daoe (class in stickydesign.test_general)

 	test_matching_energies_match() (stickydesign.test_general.test_energetics method)

 	(stickydesign.test_general.test_energetics_basic method)

 	(stickydesign.test_general.test_energetics_daoe method)

 	
 	test_symmetry() (stickydesign.test_general.test_energetics method)

 	(stickydesign.test_general.test_energetics_basic method)

 	(stickydesign.test_general.test_energetics_daoe method)

 	tolist() (stickydesign.endclasses.endarray method)

 	(stickydesign.endclasses.pairseqa method)

 	tops() (in module stickydesign.endclasses)

U

 	
 	uniform() (stickydesign.energetics_basic.EnergeticsBasic method)

 	(stickydesign.energetics_daoe.EnergeticsDAOE method)

 	
 	uniform_danglemismatch() (stickydesign.energetics_basic_old.EnergeticsBasicOld method)

 	uniform_loopmismatch() (stickydesign.energetics_basic_old.EnergeticsBasicOld method)

V

 	
 	values_chunked() (in module stickydesign.stickydesign)

stickydesign

	stickydesign package
	Subpackages

	Submodules

	stickydesign.endclasses module

	stickydesign.energetics_basic module

	stickydesign.energetics_basic_old module

	stickydesign.energetics_daoe module

	stickydesign.multimodel module

	stickydesign.newparams module

	stickydesign.plots module

	stickydesign.stickydesign module

	stickydesign.test_general module

	stickydesign.version module

	Module contents

stickydesign package

Subpackages

Submodules

stickydesign.endclasses module

	
class stickydesign.endclasses.Energetics

	Bases: object [https://docs.python.org/3/library/functions.html#object]

	
class stickydesign.endclasses.endarray

	Bases: numpy.ndarray

This is a class for arrays full ends (of type
adjacent+end+wc-adjacent-of-complementary-end).

At present, it also handles adjacent+end style ends, but self.end and
self.comp will return bogus information. It eventually needs to be split up
into two classes in order to deal with this problem.

	
adjs

	

	
append(s2)

	

	
cadjs

	

	
comps

	

	
concat(a2)

	

	
endlen

	

	
ends

	

	
fcomps

	

	
seqlen

	

	
strings

	

	
tolist()

	Return the array as an a.ndim-levels deep nested list of Python scalars.

Return a copy of the array data as a (nested) Python list.
Data items are converted to the nearest compatible builtin Python type, via
the ~numpy.ndarray.item function.

If a.ndim is 0, then since the depth of the nested list is 0, it will
not be a list at all, but a simple Python scalar.

	Parameters

	none –

	Returns

	y – The possibly nested list of array elements.

	Return type

	object [https://docs.python.org/3/library/functions.html#object], or list of object, or list of list of object, or ..

Notes

The array may be recreated via a = np.array(a.tolist()), although this
may sometimes lose precision.

Examples

For a 1D array, a.tolist() is almost the same as list(a),
except that tolist changes numpy scalars to Python scalars:

>>> a = np.uint32([1, 2])
>>> a_list = list(a)
>>> a_list
[1, 2]
>>> type(a_list[0])
<class 'numpy.uint32'>
>>> a_tolist = a.tolist()
>>> a_tolist
[1, 2]
>>> type(a_tolist[0])
<class 'int'>

Additionally, for a 2D array, tolist applies recursively:

>>> a = np.array([[1, 2], [3, 4]])
>>> list(a)
[array([1, 2]), array([3, 4])]
>>> a.tolist()
[[1, 2], [3, 4]]

The base case for this recursion is a 0D array:

>>> a = np.array(1)
>>> list(a)
Traceback (most recent call last):
 ...
TypeError: iteration over a 0-d array
>>> a.tolist()
1

	
class stickydesign.endclasses.pairseqa

	Bases: numpy.ndarray

	
revcomp()

	

	
tolist()

	Return the array as an a.ndim-levels deep nested list of Python scalars.

Return a copy of the array data as a (nested) Python list.
Data items are converted to the nearest compatible builtin Python type, via
the ~numpy.ndarray.item function.

If a.ndim is 0, then since the depth of the nested list is 0, it will
not be a list at all, but a simple Python scalar.

	Parameters

	none –

	Returns

	y – The possibly nested list of array elements.

	Return type

	object [https://docs.python.org/3/library/functions.html#object], or list of object, or list of list of object, or ..

Notes

The array may be recreated via a = np.array(a.tolist()), although this
may sometimes lose precision.

Examples

For a 1D array, a.tolist() is almost the same as list(a),
except that tolist changes numpy scalars to Python scalars:

>>> a = np.uint32([1, 2])
>>> a_list = list(a)
>>> a_list
[1, 2]
>>> type(a_list[0])
<class 'numpy.uint32'>
>>> a_tolist = a.tolist()
>>> a_tolist
[1, 2]
>>> type(a_tolist[0])
<class 'int'>

Additionally, for a 2D array, tolist applies recursively:

>>> a = np.array([[1, 2], [3, 4]])
>>> list(a)
[array([1, 2]), array([3, 4])]
>>> a.tolist()
[[1, 2], [3, 4]]

The base case for this recursion is a 0D array:

>>> a = np.array(1)
>>> list(a)
Traceback (most recent call last):
 ...
TypeError: iteration over a 0-d array
>>> a.tolist()
1

	
stickydesign.endclasses.tops(s)

	

stickydesign.energetics_basic module

	
class stickydesign.energetics_basic.EnergeticsBasic(temperature=37, coaxparams=False, singlepair=False, danglecorr=True, version=None, enclass=None)

	Bases: stickydesign.endclasses.Energetics

Energy functions based on several sources, primarily SantaLucia’s
2004 paper. This class uses the same parameters and algorithms
as EnergeticsDAOE, bet does not make DX-specific assumptions.
Instead, it assumes that each energy should simply be that of
two single strands attaching/detaching, without consideration
of nicks, stacking, or other effects related to the
beginning/end of each sequence. Dangles and tails are still
included in mismatched binding calculations when appropriate.

Relevant arguments:

singlepair (bool, default False) — treat single base pair pairings
as possible.
temperature (float in degrees Celsius, default 37) — temperature
to use for the model, in C.

	
info

	

	
matching_uniform(seqs)

	

	
temperature

	

	
uniform(seqs1, seqs2, debug=False)

	

stickydesign.energetics_basic_old module

	
class stickydesign.energetics_basic_old.EnergeticsBasicOld(mismatchtype='max')

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Energy functions based on SantaLucia’s 2004 paper. This is the “old”
energetics class, which was originally used in Stickydesign. It models
DX-tile style sticky ends, but does not do so as specifically as
the newer EnergeticsDAOE.

You probably don’t want to use this, unless you have preexisting code
or systems that rely on this model:

	for DX tiles, consider using EnergeticsDAOE

	for toeholds, consider using EnergeticsBasic

mismatchtype is one of ‘max’, ‘loop’, or ‘dangle’, specifying how to
consider mismatches. ‘max’ is probably the best choice, but is slowest -
it takes the maximum interaction of the ‘loop’ and ‘dangle’ options.

	
matching_uniform(seqs)

	

	
uniform_danglemismatch(seqs1, seqs2, fast=True)

	

	
uniform_loopmismatch(seqs1, seqs2)

	

stickydesign.energetics_daoe module

	
class stickydesign.energetics_daoe.EnergeticsDAOE(temperature=37, mismatchtype=None, coaxparams=False, singlepair=False, danglecorr=True, version=None, enclass=None)

	Bases: stickydesign.endclasses.Energetics

Energy functions based on several sources, primarily SantaLucia’s
2004 paper, along with handling of dangles, tails, and nicks
specifically for DX tile sticky ends.

	Parameters

	
	coaxparams (str [https://docs.python.org/3/library/stdtypes.html#str] or False, optional) – choose the coaxial stacking parameters to use. False is no coaxial
stacking adjustment, other options are ‘protozanova’, ‘peyret’,
and ‘pyshni’.

	singlepair (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Treat single base pair pairing as possible (defaults
to False).

	temperature (float [https://docs.python.org/3/library/functions.html#float], optional) – Temperature to use for the model, in degress Celsius (defaults to 37).

	
info

	

	
matching_uniform(seqs)

	

	
temperature

	

	
uniform(seqs1, seqs2, debug=False)

	

stickydesign.multimodel module

	
stickydesign.multimodel.deviation_score(all_ends, all_energetics, devmethod='dev')

	

	
stickydesign.multimodel.endchooser(all_energetics, target_vals=None, templates=None, init_wigglefraction=1, next_wigglefraction=0.1, devmethod='dev')

	An endchooser generator that chooses ends while trying to optimize for
multiple energy models simultaneously.

Arguments:

all_energetics: a list of energetics models to optimize for.

target_vals: if provided, a list or numpy array of target energy values
for each model. This is primarily useful if you have already generated
sticky ends, and want to choose ends that match (eg, if you chose DT ends
and now want to choose TD ones).

stickydesign.newparams module

stickydesign.plots module

	
stickydesign.plots.box_multi(all_ends, all_energetics, energetics_names=None, title='', **kwargs)

	

	
stickydesign.plots.heatmap(ends, energetics, title='', **kwargs)

	

	
stickydesign.plots.hist_multi(all_ends, all_energetics, energetics_names=None, title='', **kwargs)

	

stickydesign.stickydesign module

	
stickydesign.stickydesign.easy_space(endtype, endlength, interaction=None, fdev=0.05, maxspurious=0.5, maxendspurious=None, tries=1, oldends=[], adjs=['n', 'n'], energetics=None, alphabet='n', echoose=None)

	

	
stickydesign.stickydesign.easyends(endtype, endlength, number=0, interaction=None, fdev=0.05, maxspurious=0.5, maxendspurious=None, tries=1, oldends=[], adjs=['n', 'n'], energetics=None, alphabet='n', echoose=None, absolute=False, _presetavail=False)

	Easyends is an attempt at creating an easy-to-use function for finding sets
of ends.

	endtype: specifies the type of end being considered. The system for
classifying end types goes from 5’ to 3’, and consists of letters
describing each side of the end. For example, an end that starts after a
double-stranded region on the 5’ side and ends at the end of the strand
would be ‘DT’, while one that starts at the beginning of a strand on the
5’ side and ends in a double-stranded region would be ‘TD’. ‘T’ stands
for terminal, ‘D’ stands for double-stranded region, and ‘S’ stands for
single-stranded region. ‘S’, however, is not currently supported.

	endlength: specifies the length of end being considered, not including
adjacent bases.

	number (optional): specifies the number of ends to find. If zero or not
provided, easyends tries to find as many ends as possible.

	interaction (optional): a positive number corresponding to the desired
standard free energy for hybridization of matching sticky ends. If not
provided, easyends calculates an optimal value based on the sequence
space.

	fdev (default 0.05): the fractional deviation (above or below) of
allowable matching energies. maxspurious (default 0.5): the maximum
spurious interaction, as a fraction of the matching interaction.

	maxendspurious (default None): if provided, maxspurious is only used for
spurious interactions between ends defined as ends, and ends defined as
complements. Maxendspurious is then the maximum spurious interaction
between ends and ends, and complements and complements. In a system
where spurious interactions between ends and complements are more important
than other spurious interactions, this can allow for better sets of ends.

	tries (default 1): if > 1, easyends will return a list of sets of ends,
all satisfying the constraints.

	oldends (optional): a list of ends to be considered as already part of
the set.

	adjacents (default [‘n’,’n’]): allowable adjacent bases for ends and
complements.

	absolute (default False): fdev, maxspurious, and maxendspurious to be
interpreted as absolute kcal/mol values rather than fractional values.

	energetics (optional): an energetics class providing the energy
calculation functions. You probably don’t need to change this.

	alphabet (default ‘n’): The alphabet to use for ends, allowing
for three-letter codes.

	
stickydesign.stickydesign.endchooser_random()

	An endchooser function: return a random end with end-comp energy closest to
desint.

	
stickydesign.stickydesign.endchooser_standard(desint, wiggle=0.0)

	An endchooser function: return a random end with end-comp energy closest to
desint.

	
stickydesign.stickydesign.endfilter_standard(maxspurious)

	An endfilter function: filters out ends that have any (end-end, end-comp,
comp-end, comp-comp) interactions with new ends above maxspurious.

	
stickydesign.stickydesign.endfilter_standard_advanced(maxcompspurious, maxendspurious)

	An endfilter function: filters out ends that have end-comp or comp-end
interactions above maxcompspurious, and end-end or comp-comp interactions
above maxendspurious.

	
stickydesign.stickydesign.energy_array_uniform(seqs, energetics)

	Given an endarray and a set of sequences, return an array of the
interactions between them, including their complements.

	
stickydesign.stickydesign.enhist(endtype, length, adjacents=['n', 'n'], alphabet='n', bins=None, energetics=None, plot=False, color='b')

	

	
stickydesign.stickydesign.find_end_set_uniform(endtype, length, spacefilter, endfilter, endchooser, energetics, adjacents=['n', 'n'], num=0, numtries=1, oldendfilter=None, oldends=[], alphabet='n', _presetavail=False)

	Find a set of ends of uniform length and type satisfying uniform
constraint functions (eg, constrant functions are the same for each
end).

This function is intended to be complicated and featureful. If you want
something simpler, try easy_ends

	Parameters

	
	endtype (str [https://docs.python.org/3/library/stdtypes.html#str]) – right now ‘DT’ for 3’-terminal ends, and ‘TD’ for
5’-terminal ends,

	length (int [https://docs.python.org/3/library/functions.html#int]) – length of ends, not including adjacent bases, if applicable.

	adjacents (list of str) – (defaults to [‘n’,’n’]): acceptable bases for adjacents
(eg, [‘n’,’n’] or [‘c’, ‘c’]) for the ends and their complements,

	num (int [https://docs.python.org/3/library/functions.html#int]) – (defaults to 0): number of ends to find (0 keeps finding until
available ends are exhausted)

	numtries (int [https://docs.python.org/3/library/functions.html#int]) – (defaults to 1): if > 1, the function will return a list of
sets of ends that all individually satisfy the constraints, so that
the best one can be selected manually

	spacefilter (function) – a “spacefilter” function that takes endarrays and
filters them down to ends that, not considering spurious
interactions, are acceptable.

	endfilter (function) – an “endfilter” function that takes current ends in the
set, available ends (filtered with current ends), and new ends added,
and filters the available ends, considering interactions between ends
(eg, spurious interactions).

	endchooser (function) – an “endchooser” function that takes current ends in the
set and available ends, and returns a new end to add to the set.

	energetics (function) – an “energyfunctions” class that provides the energy
functions for everything to use.

	oldends (endarray) – an endarray of old ends to consider as part of the set

	alphabet (str [https://docs.python.org/3/library/stdtypes.html#str]) – a single letter specifying what the alphabet for the ends
should be (eg, four or three-letter code)

	oldendfilter (str [https://docs.python.org/3/library/stdtypes.html#str]) – a different “endfilter” function for use when filtering
the available ends using interactions with old ends. This is normally
not useful, but can be useful if you want, for example, to create a
sets with higher cross-interactions between two subsets than within
the two subsets.

	Returns

	an endarray of generated ends, including provided old ends

	Return type

	endarray

	
stickydesign.stickydesign.get_accept_set(endtype, length, interaction, fdev, maxendspurious, spacefilter=None, adjacents=['n', 'n'], alphabet='n', energetics=None)

	

	
stickydesign.stickydesign.spacefilter_standard(desint, dev, maxself)

	A spacefilter function: filters to ends that have a end-complement
interaction of between desint-dev and desint+dev, and a self-interaction
(end-end or comp-comp) of less than maxself.

	
stickydesign.stickydesign.values_chunked(items, endtype, chunk_dim=10)

	Given a list of lists of acceptable numbers for each position in a row of
an array, create every possible row, and return an iterator that returns
chunks of every possible row up to chunk_dim, iterating dimensions higher
than chunk_dim. This probably doesn’t need to be called directly, and may
have a _ added in the future.

Return this as an endarray, with set endtype. This can be easily emoved
for use elsewhere.

stickydesign.test_general module

	
class stickydesign.test_general.test_energetics

	Bases: object [https://docs.python.org/3/library/functions.html#object]

	
setup()

	

	
test_matching_energies_match()

	

	
test_symmetry()

	

	
class stickydesign.test_general.test_energetics_basic

	Bases: object [https://docs.python.org/3/library/functions.html#object]

	
setup()

	

	
test_matching_energies_match()

	

	
test_symmetry()

	

	
class stickydesign.test_general.test_energetics_daoe

	Bases: object [https://docs.python.org/3/library/functions.html#object]

	
setup()

	

	
test_matching_energies_match()

	

	
test_symmetry()

	

stickydesign.version module

Module contents

 nav.xhtml

 Table of Contents

 		
 Welcome to stickydesign’s documentation!

 		
 Changelog

 		
 0.8.0

 		
 0.7.0

 		
 0.4.3

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

